The existance of the unique solution of the system of equations$2x + y + z = \beta $ , $10x - y + \alpha z = 10$ and $4x+ 3y-z =6$ depends on

  • A

    Both $\alpha $ and $\beta $

  • B

    Neither $\beta $ nor $\alpha $

  • C

    $\beta $ only

  • D

    $\alpha $ only

Similar Questions

Evaluate $\Delta=\left|\begin{array}{lll}3 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3\end{array}\right|$

Consider the system of linear equations

$x+y+z=5, x+2 y+\lambda^2 z=9$

$x+3 y+\lambda z=\mu$, where $\lambda, \mu \in R$. Then, which of the following statement is NOT correct?

  • [JEE MAIN 2024]

If $'a'$ is non real complex number for which system of equations $ax -a^2y + a^3z$ = $0$ , $-a^2x + a^3y + az$ = $0$ and $a^3x + ay -a^2z$ = $0$ has non trivial solutions, then $|a|$ is 

If $x = a + 2b$ satisfies the cubic $(a, b\in R)$ $f (x)=$ $\left| {\,\begin{array}{*{20}{c}}{a - x}&b&b\\b&{a - x}&b\\b&b&{a - x}\end{array}\,} \right|$ $= 0$, then its other two roots are

If $A = \int\limits_1^{\sin \theta } {\frac{t}{{1 + {t^2}}}} dt$ and $B = \int\limits_1^{\cos ec\theta } {\frac{dt}{{t\left( {1 + {t^2}} \right)}}} $ , (where $\theta  \in \left( {0,\frac{\pi }{2}} \right))$, then the-value of $\left| {\begin{array}{*{20}{c}}
A&{{A^2}}&{ - B}\\
{{e^{A + B}}}&{{B^2}}&{ - 1}\\
1&{{A^2} + {B^2}}&{ - 1}
\end{array}} \right|$ is